Purification of glyoxysomal catalase and immunochemical comparison of glyoxysomal and leaf peroxisomal catalase in germinating pumpkin cotyledons.

نویسندگان

  • J Yamaguchi
  • M Nishimura
چکیده

As a step to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in pumpkin (Cucurbita sp. Amakuri Nankin) cotyledons, catalase was purified from glyoxysomes. The molecular weight of the purified catalase was determined to be 230,000 to 250,000 daltons. The enzyme was judged to consist of four identical pieces of the monomeric subunit with molecular weight of 55,000 daltons. Absorption spectrum of the catalase molecule gave two major peaks at 280 and 405 nanometers, showing that the pumpkin enzyme contains heme. The ratio of absorption at 405 and 280 nanometers was 1.0, the value being lower than that obtained for catalase from other plant sources. These results indicate that the pumpkin glyoxysomal catalase contains the higher content of heme in comparison with other plant catalase.The immunochemical resemblance between glyoxysomal and leaf peroxisomal catalase was examined by using the antiserum specific against the purified enzyme preparation from pumpkin glyoxysomes. Ouchterlony double diffusion and immunoelectrophoretic analysis demonstrated that catalase from both types of microbodies cross-reacted completely whereas the immunotitration analysis showed that the specific activity of the glyoxysomal catalase was 2.5-fold higher than that of leaf peroxisomal catalase. Single radial immunodiffusion analysis showed that the specific activity of catalase decreased during the greening of pumpkin cotyledons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The development of microbodies (glyoxysomes and leaf peroxisomes) in cotyledons of germinating watermelon seedlings.

The ontogeny of glyoxysomes and leaf peroxisomes has been examined in the cotyledons of germinating watermelon (Citrullus vulgaris) seedlings. Organelles from the cotyledons were extracted by razor blade homogenization and microbodies were separated by sucrose density gradient fractionation. Both kinds of microbodies have the same mean equilibrium density on sucrose gradients.The development of...

متن کامل

Maturation of catalase precursor proceeds to a different extent in glyoxysomes and leaf peroxisomes of pumpkin cotyledons.

As an approach to study the mechanism of the microbody transition (glyoxysomes to leaf peroxisomes) in greening pumpkin cotyledons, catalase molecules were purified from the two different types of microbody and their structural properties were compared. The purified glyoxysomal catalase was found to consist of four identical subunits (55 kDa), whereas the leaf peroxisomal catalase contains two ...

متن کامل

Immunocytochemical Analysis Shows that Glyoxysomes Are Directly Transformed to Leaf Peroxisomes during Greening of Pumpkin Cotyledons.

The functional transition of glyoxysomes to leaf peroxisomes occurs during greening of germinating pumpkin cotyledons (Cucurbita sp. Amakuri Nankin). The immunocytochemical protein A-gold method was employed in the analysis of the transition using glyoxysomal specific citrate synthase immunoglobulin G and leaf peroxisomal specific glycolate oxidase immunoglobulin G. The labeling density of citr...

متن کامل

Microbody Malate Dehydrogenase Isozyme in Cotyledons of Cucumis sativus L. during Development.

The properties of the microbody malate dehydrogenase (EC 1.1.1.37) (MDH) isozyme from cotyledons of Cucumus sativus L. were compared during development. It is concluded that the isozyme remains unaltered, despite the transition from glyoxysomal to peroxisomal function that occurs during greening of the cotyledons. This conclusion is based on electrophoretic behavior, chromatographic elution fro...

متن کامل

Microbodies (Glyoxysomes and Peroxisomes) in Cucumber Cotyledons: Correlative Biochemical and Ultrastructural Study in Light- and Dark-grown Seedlings.

The changes in activities of glyoxysomal and peroxisomal enzymes have been correlated with the fine structure of microbodies in cotyledons of the cucumber (Cucumis sativus L.) during the transition from fat degradation to photosynthesis in light-grown plants, and in plants grown in the dark and then exposed to light. During early periods of development in the light (days 2 through 4), the micro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Plant physiology

دوره 74 2  شماره 

صفحات  -

تاریخ انتشار 1984